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Introduction 
 
Analysis of fish populations and fish habitats in the Skagit River watershed has been hampered 
for decades by the lack of mapped hydrography that accurately depicts the existence and location 
of streams in a digital geographic information system (GIS) format. Without accurate 
hydrography it is impossible to meaningfully evaluate the shading effects of riparian vegetation 
on streams at a spatial scale relevant for watershed-level restoration planning, and difficult to 
map the location, extent, and distribution of anadromous and resident fish. Similarly, locating 
fish-blocking culverts at road crossings is often ambiguous when mapped streams do not 
correspond with the actual topography, and mapping protective stream buffers is inaccurate at 
best, and likely much less effective, when maps either include streams that don't exist on the 
ground, or don't include streams that do exist. Lidar-derived hydrography (LDH) does not 
completely eliminate this last problem, but it does improve the locational accuracy of most 
streams. 
 
In 2016 the Swinomish Tribe and Skagit County contributed to a Washington DNR effort to 
collect lidar data that, when combined with previous lidar, would fully encompass Skagit 
anadromous zones. The Skagit River System Cooperative (SRSC), an environmental protection 
and restoration consortium of the Swinomish Indian Tribal Community and the Sauk-Suiattle 
Indian Tribe, has since constructed an updated hydrography layer that combines new lidar-
derived hydrography where it can be generated, with existing hydrography from the National 
Hydrography Dataset (NHD) in areas where the NHD is as good or better than can be generated 
from lidar. Thus in the headwaters where lidar does not yet exist for the Skagit, the NHD was 
retained. Likewise, the NHD was retained in the mainstems and many lowland areas where the 
NHD has been recently updated using aerial photography, particularly in the agricultural 
drainages. In the many miles of small and intermediate streams, particularly those in forested 
areas, the new lidar hydrography provides distinctly superior stream arcs over the NHD and 
other available hydrography layers.  
 
This document is a description of the data sources and methods used to create the new Skagit 
LDH and incorporate within it the existing NHD hydrography. 
 
 
Data sources  
 
High-resolution lidar rasters (Table 1) were assembled for the entire Skagit anadromous zone 
and converted to common horizontal (State Plane Washington North NAD83, ft) and vertical 
(NAVD88, ft) spatial reference frames. To calculate consistent watershed areas throughout the 
basin, areas of the Skagit watershed where lidar was not available were represented instead with 
a USGS 10m digital elevation model (DEM), and merged with the high-resolution lidar on a 3-
foot grid spacing. 
 



Table 1. lidar flight characteristics 
Lidar flight Acquisition 

Year 
Source/Client First return 

point density 
points/m2 

Ground 
Classified 
points/m2 

Western 
Washington 
3DEP 

2016 - 2017 USGS, WaDNR 12.29  2.46 

Glacier Peak 2014-2015 USGS Volcano 
Observatory 

27.05 2.86 

Mt Baker 2015 USGS Volcano 
Observatory 

19.73 2.34 

Skagit Coastal* 2019 NOAA  14.92 8.94 
     
* Water-only tiles omitted from density calculations 
 
Generating single-thread hydrography 
 
New hydrography for the Skagit and Samish watersheds (WRIAs 3 & 4) was generated using the 
combined lidar and 10m DEM mosaic. The process was to 1) run an initial set of hydro routines, 
which often depicted flow alignment errors, 2) digitize correct flow paths to reroute those errors, 
and 3) re-run the entire hydro when all the errors had been corrected. To ease the computational 
burden, USGS HUC-10 watersheds were run individually and then merged when final. An 
ArcPy script, provided at the end of this document, was run iteratively to generate an efficient 
work flow and assure consistency of results. 
 
Channel initiation was set to 25.8 acres (125,000 3x3 ft pixels), which approximates 
hydrography on the USGS 7.5 minute topographic maps.  
 
Extensive editing and modification was necessary to direct flow correctly through natural flow 
impoundments and anthropogenic channel modifications such as road culverts, dams, and 
ditches. The ArcPy script operates on two inputs: 1) an existing, unmodified DEM and 2) an arc 
feature class of flow modification paths (“trenches"). These trenches can represent culverts, 
dams, ditches, or other hydromodifications where the lidar does not initially detect the correct 
flow path Figure __). These arc features are typically digitized manually, but could be adapted 
from existing data on road culverts or other hydromodifications.  
 
Once the inputs have been assembled and the filenames, paths, licenses, and other variables have 
been set, the script proceeds through several steps to generate hydrography.  
 
 First, if only working on a sub-basin, the script clips out a temporary DEM on which to 

calculate the hydro. This step greatly speeds processing by limiting the processing in smaller 
areas, or can be skipped if working on an entire watershed. 

 The script then “excavates” the DEM surrounding the "trench" arcs, to a depth equivalent to 
the lowest elevation within six feet of the trench, and then creates a new, temporary DEM that 
incorporates the excavations.  

 Using the trenched DEM, the script applies the standard sink filling, flow direction, and flow 
accumulation algorithms. During this step the trenches are re-filled so that flow is (usually) 



directed to the correct downstream outlet. New hydrography arcs are generated along the 
corrected flow paths.  

The script can be run iteratively for sub-basins until a correct configuration of trenches is 
digitized, then the basin run as a whole for a consistent and connected hydrography feature 
class. It is important that the final run is on a hydrographically complete DEM (which extends 
to the uppermost ridges) to obtain consistent stream initiation points, which are based on 
contributing watershed area. 
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by the (orange) trenches to correctly follow topography (magenta). The NHD streams 
(black) are shown for comparison. 
 
 
The lidar-derived streams were combined with NHD arcs in the floodplain zones and/or 
manually edited to create a complete hydro data set. Manual editing was necessary at lakes, 
ponds, wetlands, floodplains, and other closed depressional areas to correctly align single-thread 



hydrography to known routes visible on aerial photographs and in the field. The standard ArcGIS 
hydrography tools (Fill, Flow Direction, Flow Accumulation) do not function well in areas of 
low topographic relief and, in the Skagit LDH case, were corrected manually. 
 
Channel bank outlines for mainstems, larger tributaries, and ponds and wetlands were created 
under a separate effort. This document describes single-thread hydrography only.  
 
Smoothing the single-thread hydrography 

The single-thread hydrography dataset then went through a series of algorithms to smooth and 
add additional physical attributes. In following the cell-by-cell path of steepest descent, the D8 
flow routing algorithm produces unrealistically-sinuous flow paths, especially in low gradient 
reaches. The streamlines were smoothed to 1) produce more realistic reach lengths (and therefore 
more realistic gradients), and 2) to produce a more realistic looking cartographic effect. The 
Smooth Lines geoprocessing tool was used in ArcGIS 10.7, which allows the user to specify the 
maximum distance a vertex will be moved in the smoothing process (referred to as the 
‘smoothing tolerance’). The algorithm used by this tool keeps reach endpoint vertices fixed. 
Because stream junctions are mapped as reach endpoints in the mapping scheme, this feature 
ensures all confluences remain connected during smoothing. After an exploration of several 
smoothing schemes (uniform smoothing using a variety of fixed smoothing tolerances, varying 
the smoothing tolerance based on stream order) each reach was smoothed using a tolerance of 50 
ft. because it was the minimum tolerance that produced a visually-realistic cartography. In 
comparison to the unsmoothed lines, the median percent increase in channel gradient using a 
tolerance of 50 ft was 12% (Fig --) for a test sub-basin. 



 

Figure --. Percent increase in channel gradient due to smoothing of the streamlines using a 
range of smoothing tolerances for a subset of the hydrographic dataset (the Loretta Creek-
Skagit River HUC). 

Assigning physical stream attributes 

A combination of ArcGIS geoprocessing tools and python routines was used to calculate 
contributing drainage area, gradient, and bankfull channel width for each reach. Channel gradient 
was computed by dividing the difference between elevations at reach endpoints (pulled from the 
lidar DEM) by the reach length (smoothed with a tolerance of 50 ft as discussed above).  

Other attributes, such as watershed area and accumulated precipitation, were calculated using the 
National Elevation Dataset DEM (10m XY resolution). The hydrographic network was first 
‘burned’ into the 10m DEM by subtracting 5m from all DEM cells that were overlain by a 
stream pixel. The standard ArcGIS flow routing tools were used to calculate flow accumulation. 
An additional flow accumulation weighted by PRISM gridded precipitation data (PRISM 
Climate Group 2014) was performed to estimate total upstream precipitation. Mean upstream 
precipitation is the accumulated precipitation divided by the unweighted flow accumulation.  



To calculate channel bankfull width, regression equations were used from both Davies et al. 
(2007) and Hyatt et al. (2004). The Davies et al. equation is  

 BFW = 0.04(A.048) (P0.74),  

where BFW is bankfull channel width, A is contributing drainage area, and P is the mean 
upstream precipitation. The Hyatt equation is  

 BFW = exp[-5.52 + (0.46P) + (0.23gradcode)],  

where P in this case is the natural logarithm of the cumulative upstream precipitation and 
gradcode = 0 where channel gradient < 0.04 ft/ft and gradcode = 1 where gradient > 0.04 ft/ft. 

 

  

Figure --. Comparison of the two channel width equations used. Blue dots represent reaches 
where gradcode = 1 in the Hyatt width equation (higher gradient reaches) and orange 
symbols represent reaches where gradcode = 0 (low gradient reaches). The 1:1 line is 
shown as a dashed black line. 



A comparison of the two width equations demonstrates that the Hyatt equation consistently 
predicts larger widths than the Davies equation (Fig. --). The difference between the two 
equations is more pronounced at wider channels and in higher sloped reaches, the latter being a 
function of the gradcode feature of the Hyatt equation. This discrepancy could be explained by 
the differing geographic extents of the two studies: The Davies equation was calibrated to sites 
across Puget Sound and Olympic Coast drainage basins (with only six sites in the Skagit River 
basin), while the Hyatt equation focused on sites in the Skagit, Nooksack and Stillaguamish 
basins. Without additional field work to verify the two equations, it was assumed the Hyatt 
equation is the most appropriate for the Skagit River basin hydrography. Both width estimates 
remain in the attribute table for future testing. 

Questions regarding these methods should be directed to: 

Tim Hyatt, Skagit River System Cooperative, thyatt@skagitcoop.org 
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Example Python script for generating hydrography that bypasses culverts and other 
hydromodifications. Paste into IDLE or other Python console for use. 
 
# -*- coding: utf-8 -*- 
# --------------------------------------------------------------------------- 
# Hydro_8.py 
# Created on: 20180809      last modified 20220202 
# Runs the Hydro model from an input DEM to output arcs  
#   burns in the culvert crossings where sinks don't fill properly 
#   converts the culvert lines to polygons to create a broader "well" that is filled 
#   This version 8 is edited somewhat for release in the methods document 
 
# Sequence for flow is FillSinks, FlowDirction, FlowAccumulation, then create arcs as vectors 
# Earlier versions would smooth the arcs, which was time consuming and is now left for later 
 
# Syntax: Buffer_analysis (in_features, out_feature_class, buffer_distance_or_field, 
#       {line_side}, {line_end_type}, {dissolve_option}, {dissolve_field}, {method}) 
# Syntax: ZonalStatistics (in_zone_data, zone_field, in_value_raster, {statistics_type}, 

{ignore_nodata}) 
# Syntax: Con (in_conditional_raster, in_true_raster_or_constant, {in_false_raster_or_constant}, 

{where_clause}) 
# Syntax: Fill (in_surface_raster, {z_limit}) 
# Syntax: FlowDirection (in_surface_raster, {force_flow}, {out_drop_raster}) 
# Syntax: FlowAccumulation (in_flow_direction_raster, {in_weight_raster}, {data_type}) 
# Syntax: CalculateStatistics_management (in_raster_dataset, {x_skip_factor}, {y_skip_factor}, 

{ignore_values}, {skip_existing}, {area_of_interest}) 
# Syntax: StreamToFeature (in_stream_raster, in_flow_direction_raster, out_polyline_features, 

{simplify}) 
# --------------------------------------------------------------------------- 
# Import arcpy module 
import arcpy, datetime 
from arcpy import env 
from arcpy.sa import * 
 
# Set the workspace and environment 
arcpy.env.workspace = r"C:\TLHwork\GISprojects\Hydro\Hydro8.gdb" 
arcpy.env.overwriteOutput = True 
arcpy.env.cellSize = "MINOF" 
 
# Check out any necessary licenses 
arcpy.CheckOutExtension("spatial") 
 
startTime = datetime.datetime.now() 
print("starting at " + str(startTime)) 
 
# Choose your favorite input DEM and set the output DEM 



InputDEM = r"E:\LiDAR\Skagit_2020\skagit_dem" 
InDEMmask = "hull_CasClip" 
DEMclip = "CasClip1"  
 
print("Extracting DEM by mask") 
# If you don't already have a local grid, then first use ExtractByMask 
outExtractByMask = ExtractByMask(InputDEM, InDEMmask) 
outExtractByMask.save(DEMclip) 
 
# Set your input and output filenames here 
site = "CascTest" 
version = "_a" 
wigglyFC = site + "_125k" + version  # this is the output hydro file 
 
# Local variables to extract elevations to the Culvert FC: 
CrossFC = "Trench_merge_20191125" 
culvPoly = "t_poly" 
buffDist = "6" 
Field = "OBJECTID" 
 
# Hydro Variables 
trenched = "t_trench" 
outFill = "t_Fill" 
outFdir = "t_Fdir" 
outFacc = "t_Facc" 
zLimit = "" # if blank then all sinks will be filled regardless of depth 
inWeightRaster = "" 
dataType = "INTEGER" 
ifTrue = "1" 
ifFalse = "" #means "NULL" or "NO_DATA" 
whereClause = "VALUE >= 125000"  # 125k 3x3 pixels about matches USGS 7.5 min topo 
StreamRaster = "t_hydropixel" 
 
print "Variables are set. Now buffering trenches" 
 
# First, buffer each of the culverts by 6 feet to broaden the "well" 
arcpy.Buffer_analysis(CrossFC, culvPoly, buffDist, "FULL", "ROUND", "NONE", "") 
 
print("culverts are buffered, now calculating MIN elevations and extracting temp grid") 
# this step finds the lowest elevation within the trench buffer 
outRAS = ZonalStatistics(culvPoly, Field, DEMclip,"MINIMUM", "NODATA") 
 
# Con statement keeps the DEMclip values where outRAS is Null, and the outRAS values where 

not null 
arcpy.env.extent = DEMclip 
outCon = Con(IsNull(outRAS), DEMclip, outRAS) 



# outCon.save(Raster(r"C:\Projects\Hydro\Trenches.gdb\t_trench")) 
 
print("Filling sinks") 
# Start here if you're not trenching the culverts; that is, if you're running the hydro for the first 

time 
# if using Extract By Mask input = DEMclip or InputDEM; if using Trenches then outCon 
#outFil = Fill(DEMclip, zLimit) #### 
outFil = Fill(outCon, zLimit) #### 
outFil.save(outFill) 
 
print("Calculating Flow Direction") 
outFlowDirection = FlowDirection(outFill, "NORMAL", "") 
outFlowDirection.save(outFdir) 
 
print("Calculating Flow Accumulation (this takes a while)") 
outFlowAccumulation = FlowAccumulation(outFdir, inWeightRaster, dataType) 
outFlowAccumulation.save(outFacc) 
 
print("Flow Accumulation finished, now creating stream arcs") 
# Calc statistics so the Con statement works over the correct range of data 
arcpy.CalculateStatistics_management(outFacc) 
 
# Use a Con statement to create a raster of stream pixels 
outCon = Con(outFacc, ifTrue, ifFalse, whereClause) 
outCon.save(StreamRaster) 
 
# Use the stream pixels to create arc features  
StreamToFeature(StreamRaster, outFdir, wigglyFC, "NO_SIMPLIFY") 
 
print("Done!") 
 
endTime = datetime.datetime.now() 
stringTime = endTime.strftime('%Y%m%d %H:%M') 
print("finished at " + str(endTime)) 
 


