
Methods description for the Skagit River lidar-derived
hydrography

Tim Hyatt, Gus Seixas, & Kate Ramsden
Skagit River System Cooperative

February 2, 2022

Introduction

Analysis of fish populations and fish habitats in the Skagit River watershed has been hampered
for decades by the lack of mapped hydrography that accurately depicts the existence and location
of streams in a digital geographic information system (GIS) format. Without accurate
hydrography it is impossible to meaningfully evaluate the shading effects of riparian vegetation
on streams at a spatial scale relevant for watershed-level restoration planning, and difficult to
map the location, extent, and distribution of anadromous and resident fish. Similarly, locating
fish-blocking culverts at road crossings is often ambiguous when mapped streams do not
correspond with the actual topography, and mapping protective stream buffers is inaccurate at
best, and likely much less effective, when maps either include streams that don't exist on the
ground, or don't include streams that do exist. Lidar-derived hydrography (LDH) does not
completely eliminate this last problem, but it does improve the locational accuracy of most
streams.

In 2016 the Swinomish Tribe and Skagit County contributed to a Washington DNR effort to
collect lidar data that, when combined with previous lidar, would fully encompass Skagit
anadromous zones. The Skagit River System Cooperative (SRSC), an environmental protection
and restoration consortium of the Swinomish Indian Tribal Community and the Sauk-Suiattle
Indian Tribe, has since constructed an updated hydrography layer that combines new lidar-
derived hydrography where it can be generated, with existing hydrography from the National
Hydrography Dataset (NHD) in areas where the NHD is as good or better than can be generated
from lidar. Thus in the headwaters where lidar does not yet exist for the Skagit, the NHD was
retained. Likewise, the NHD was retained in the mainstems and many lowland areas where the
NHD has been recently updated using aerial photography, particularly in the agricultural
drainages. In the many miles of small and intermediate streams, particularly those in forested
areas, the new lidar hydrography provides distinctly superior stream arcs over the NHD and
other available hydrography layers.

This document is a description of the data sources and methods used to create the new Skagit
LDH and incorporate within it the existing NHD hydrography.

Data sources

High-resolution lidar rasters (Table 1) were assembled for the entire Skagit anadromous zone
and converted to common horizontal (State Plane Washington North NAD83, ft) and vertical
(NAVD88, ft) spatial reference frames. To calculate consistent watershed areas throughout the
basin, areas of the Skagit watershed where lidar was not available were represented instead with
a USGS 10m digital elevation model (DEM), and merged with the high-resolution lidar on a 3-
foot grid spacing.

Table 1. lidar flight characteristics
Lidar flight Acquisition

Year
Source/Client First return

point density
points/m2

Ground
Classified
points/m2

Western
Washington
3DEP

2016 - 2017 USGS, WaDNR 12.29 2.46

Glacier Peak 2014-2015 USGS Volcano
Observatory

27.05 2.86

Mt Baker 2015 USGS Volcano
Observatory

19.73 2.34

Skagit Coastal* 2019 NOAA 14.92 8.94

* Water-only tiles omitted from density calculations

Generating single-thread hydrography

New hydrography for the Skagit and Samish watersheds (WRIAs 3 & 4) was generated using the
combined lidar and 10m DEM mosaic. The process was to 1) run an initial set of hydro routines,
which often depicted flow alignment errors, 2) digitize correct flow paths to reroute those errors,
and 3) re-run the entire hydro when all the errors had been corrected. To ease the computational
burden, USGS HUC-10 watersheds were run individually and then merged when final. An
ArcPy script, provided at the end of this document, was run iteratively to generate an efficient
work flow and assure consistency of results.

Channel initiation was set to 25.8 acres (125,000 3x3 ft pixels), which approximates
hydrography on the USGS 7.5 minute topographic maps.

Extensive editing and modification was necessary to direct flow correctly through natural flow
impoundments and anthropogenic channel modifications such as road culverts, dams, and
ditches. The ArcPy script operates on two inputs: 1) an existing, unmodified DEM and 2) an arc
feature class of flow modification paths (“trenches"). These trenches can represent culverts,
dams, ditches, or other hydromodifications where the lidar does not initially detect the correct
flow path Figure __). These arc features are typically digitized manually, but could be adapted
from existing data on road culverts or other hydromodifications.

Once the inputs have been assembled and the filenames, paths, licenses, and other variables have
been set, the script proceeds through several steps to generate hydrography.

 First, if only working on a sub-basin, the script clips out a temporary DEM on which to

calculate the hydro. This step greatly speeds processing by limiting the processing in smaller
areas, or can be skipped if working on an entire watershed.

 The script then “excavates” the DEM surrounding the "trench" arcs, to a depth equivalent to
the lowest elevation within six feet of the trench, and then creates a new, temporary DEM that
incorporates the excavations.

 Using the trenched DEM, the script applies the standard sink filling, flow direction, and flow
accumulation algorithms. During this step the trenches are re-filled so that flow is (usually)

directed to the correct downstream outlet. New hydrography arcs are generated along the
corrected flow paths.

The script can be run iteratively for sub-basins until a correct configuration of trenches is
digitized, then the basin run as a whole for a consistent and connected hydrography feature
class. It is important that the final run is on a hydrographically complete DEM (which extends
to the uppermost ridges) to obtain consistent stream initiation points, which are based on
contributing watershed area.

Fig
__.
Firs
t
pas
s
lida
r-
der
ive
d
str
ea
ms
(cy
an)
are
dir
ect
ed
thr
ou
gh
roa
d
cul
ver
ts
an
d
oth
er
obs
tru
ctio
ns

by the (orange) trenches to correctly follow topography (magenta). The NHD streams
(black) are shown for comparison.

The lidar-derived streams were combined with NHD arcs in the floodplain zones and/or
manually edited to create a complete hydro data set. Manual editing was necessary at lakes,
ponds, wetlands, floodplains, and other closed depressional areas to correctly align single-thread

hydrography to known routes visible on aerial photographs and in the field. The standard ArcGIS
hydrography tools (Fill, Flow Direction, Flow Accumulation) do not function well in areas of
low topographic relief and, in the Skagit LDH case, were corrected manually.

Channel bank outlines for mainstems, larger tributaries, and ponds and wetlands were created
under a separate effort. This document describes single-thread hydrography only.

Smoothing the single-thread hydrography

The single-thread hydrography dataset then went through a series of algorithms to smooth and
add additional physical attributes. In following the cell-by-cell path of steepest descent, the D8
flow routing algorithm produces unrealistically-sinuous flow paths, especially in low gradient
reaches. The streamlines were smoothed to 1) produce more realistic reach lengths (and therefore
more realistic gradients), and 2) to produce a more realistic looking cartographic effect. The
Smooth Lines geoprocessing tool was used in ArcGIS 10.7, which allows the user to specify the
maximum distance a vertex will be moved in the smoothing process (referred to as the
‘smoothing tolerance’). The algorithm used by this tool keeps reach endpoint vertices fixed.
Because stream junctions are mapped as reach endpoints in the mapping scheme, this feature
ensures all confluences remain connected during smoothing. After an exploration of several
smoothing schemes (uniform smoothing using a variety of fixed smoothing tolerances, varying
the smoothing tolerance based on stream order) each reach was smoothed using a tolerance of 50
ft. because it was the minimum tolerance that produced a visually-realistic cartography. In
comparison to the unsmoothed lines, the median percent increase in channel gradient using a
tolerance of 50 ft was 12% (Fig --) for a test sub-basin.

Figure --. Percent increase in channel gradient due to smoothing of the streamlines using a
range of smoothing tolerances for a subset of the hydrographic dataset (the Loretta Creek-
Skagit River HUC).

Assigning physical stream attributes

A combination of ArcGIS geoprocessing tools and python routines was used to calculate
contributing drainage area, gradient, and bankfull channel width for each reach. Channel gradient
was computed by dividing the difference between elevations at reach endpoints (pulled from the
lidar DEM) by the reach length (smoothed with a tolerance of 50 ft as discussed above).

Other attributes, such as watershed area and accumulated precipitation, were calculated using the
National Elevation Dataset DEM (10m XY resolution). The hydrographic network was first
‘burned’ into the 10m DEM by subtracting 5m from all DEM cells that were overlain by a
stream pixel. The standard ArcGIS flow routing tools were used to calculate flow accumulation.
An additional flow accumulation weighted by PRISM gridded precipitation data (PRISM
Climate Group 2014) was performed to estimate total upstream precipitation. Mean upstream
precipitation is the accumulated precipitation divided by the unweighted flow accumulation.

To calculate channel bankfull width, regression equations were used from both Davies et al.
(2007) and Hyatt et al. (2004). The Davies et al. equation is

 BFW = 0.04(A.048) (P0.74),

where BFW is bankfull channel width, A is contributing drainage area, and P is the mean
upstream precipitation. The Hyatt equation is

 BFW = exp[-5.52 + (0.46P) + (0.23gradcode)],

where P in this case is the natural logarithm of the cumulative upstream precipitation and
gradcode = 0 where channel gradient < 0.04 ft/ft and gradcode = 1 where gradient > 0.04 ft/ft.

Figure --. Comparison of the two channel width equations used. Blue dots represent reaches
where gradcode = 1 in the Hyatt width equation (higher gradient reaches) and orange
symbols represent reaches where gradcode = 0 (low gradient reaches). The 1:1 line is
shown as a dashed black line.

A comparison of the two width equations demonstrates that the Hyatt equation consistently
predicts larger widths than the Davies equation (Fig. --). The difference between the two
equations is more pronounced at wider channels and in higher sloped reaches, the latter being a
function of the gradcode feature of the Hyatt equation. This discrepancy could be explained by
the differing geographic extents of the two studies: The Davies equation was calibrated to sites
across Puget Sound and Olympic Coast drainage basins (with only six sites in the Skagit River
basin), while the Hyatt equation focused on sites in the Skagit, Nooksack and Stillaguamish
basins. Without additional field work to verify the two equations, it was assumed the Hyatt
equation is the most appropriate for the Skagit River basin hydrography. Both width estimates
remain in the attribute table for future testing.

Questions regarding these methods should be directed to:

Tim Hyatt, Skagit River System Cooperative, thyatt@skagitcoop.org

References cited

Davies, J.R., Lagueux, K.M., Sanderson, B. and Beechie, T.J., 2007. Modeling Stream Channel

Characteristics From Drainage‐Enforced DEMs in Puget Sound, Washington, USA 1.
JAWRA Journal of the American Water Resources Association, 43(2), pp.414-426.

Hyatt, T.L., T.Z. Waldo, and T.J. Beechie. 2004. A watershed-scale assessment of riparian
forests, with implications for restoration. Restoration Ecology 12(2): 175-183

PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 4
Feb 2014, accessed 16 June 2021.

Example Python script for generating hydrography that bypasses culverts and other
hydromodifications. Paste into IDLE or other Python console for use.

-*- coding: utf-8 -*-

Hydro_8.py
Created on: 20180809 last modified 20220202
Runs the Hydro model from an input DEM to output arcs
burns in the culvert crossings where sinks don't fill properly
converts the culvert lines to polygons to create a broader "well" that is filled
This version 8 is edited somewhat for release in the methods document

Sequence for flow is FillSinks, FlowDirction, FlowAccumulation, then create arcs as vectors
Earlier versions would smooth the arcs, which was time consuming and is now left for later

Syntax: Buffer_analysis (in_features, out_feature_class, buffer_distance_or_field,
{line_side}, {line_end_type}, {dissolve_option}, {dissolve_field}, {method})
Syntax: ZonalStatistics (in_zone_data, zone_field, in_value_raster, {statistics_type},

{ignore_nodata})
Syntax: Con (in_conditional_raster, in_true_raster_or_constant, {in_false_raster_or_constant},

{where_clause})
Syntax: Fill (in_surface_raster, {z_limit})
Syntax: FlowDirection (in_surface_raster, {force_flow}, {out_drop_raster})
Syntax: FlowAccumulation (in_flow_direction_raster, {in_weight_raster}, {data_type})
Syntax: CalculateStatistics_management (in_raster_dataset, {x_skip_factor}, {y_skip_factor},

{ignore_values}, {skip_existing}, {area_of_interest})
Syntax: StreamToFeature (in_stream_raster, in_flow_direction_raster, out_polyline_features,

{simplify})

Import arcpy module
import arcpy, datetime
from arcpy import env
from arcpy.sa import *

Set the workspace and environment
arcpy.env.workspace = r"C:\TLHwork\GISprojects\Hydro\Hydro8.gdb"
arcpy.env.overwriteOutput = True
arcpy.env.cellSize = "MINOF"

Check out any necessary licenses
arcpy.CheckOutExtension("spatial")

startTime = datetime.datetime.now()
print("starting at " + str(startTime))

Choose your favorite input DEM and set the output DEM

InputDEM = r"E:\LiDAR\Skagit_2020\skagit_dem"
InDEMmask = "hull_CasClip"
DEMclip = "CasClip1"

print("Extracting DEM by mask")
If you don't already have a local grid, then first use ExtractByMask
outExtractByMask = ExtractByMask(InputDEM, InDEMmask)
outExtractByMask.save(DEMclip)

Set your input and output filenames here
site = "CascTest"
version = "_a"
wigglyFC = site + "_125k" + version # this is the output hydro file

Local variables to extract elevations to the Culvert FC:
CrossFC = "Trench_merge_20191125"
culvPoly = "t_poly"
buffDist = "6"
Field = "OBJECTID"

Hydro Variables
trenched = "t_trench"
outFill = "t_Fill"
outFdir = "t_Fdir"
outFacc = "t_Facc"
zLimit = "" # if blank then all sinks will be filled regardless of depth
inWeightRaster = ""
dataType = "INTEGER"
ifTrue = "1"
ifFalse = "" #means "NULL" or "NO_DATA"
whereClause = "VALUE >= 125000" # 125k 3x3 pixels about matches USGS 7.5 min topo
StreamRaster = "t_hydropixel"

print "Variables are set. Now buffering trenches"

First, buffer each of the culverts by 6 feet to broaden the "well"
arcpy.Buffer_analysis(CrossFC, culvPoly, buffDist, "FULL", "ROUND", "NONE", "")

print("culverts are buffered, now calculating MIN elevations and extracting temp grid")
this step finds the lowest elevation within the trench buffer
outRAS = ZonalStatistics(culvPoly, Field, DEMclip,"MINIMUM", "NODATA")

Con statement keeps the DEMclip values where outRAS is Null, and the outRAS values where

not null
arcpy.env.extent = DEMclip
outCon = Con(IsNull(outRAS), DEMclip, outRAS)

outCon.save(Raster(r"C:\Projects\Hydro\Trenches.gdb\t_trench"))

print("Filling sinks")
Start here if you're not trenching the culverts; that is, if you're running the hydro for the first

time
if using Extract By Mask input = DEMclip or InputDEM; if using Trenches then outCon
#outFil = Fill(DEMclip, zLimit) ####
outFil = Fill(outCon, zLimit) ####
outFil.save(outFill)

print("Calculating Flow Direction")
outFlowDirection = FlowDirection(outFill, "NORMAL", "")
outFlowDirection.save(outFdir)

print("Calculating Flow Accumulation (this takes a while)")
outFlowAccumulation = FlowAccumulation(outFdir, inWeightRaster, dataType)
outFlowAccumulation.save(outFacc)

print("Flow Accumulation finished, now creating stream arcs")
Calc statistics so the Con statement works over the correct range of data
arcpy.CalculateStatistics_management(outFacc)

Use a Con statement to create a raster of stream pixels
outCon = Con(outFacc, ifTrue, ifFalse, whereClause)
outCon.save(StreamRaster)

Use the stream pixels to create arc features
StreamToFeature(StreamRaster, outFdir, wigglyFC, "NO_SIMPLIFY")

print("Done!")

endTime = datetime.datetime.now()
stringTime = endTime.strftime('%Y%m%d %H:%M')
print("finished at " + str(endTime))

